ANTIMICROBIAL PROPERTIES OF THE TRICLOSAN-LOADED POLYMERIC COMPOSITE BASED ON UNSATURATED POLYESTER RESIN: SYNTHESIS, CHARACTERIZATION AND ACTIVITY

dc.contributor.authorTauanov, Zhandos
dc.contributor.authorZakiruly, Olzhas
dc.contributor.authorBaimenova, Zhuldyz
dc.contributor.authorBaimenov, Alzhan
dc.contributor.authorAkimbekov, Nuraly S.
dc.contributor.authorBerillo, Dmitriy
dc.date.accessioned2023-07-03T05:34:17Z
dc.date.available2023-07-03T05:34:17Z
dc.date.issued2022
dc.description.abstractThe manufacturing of sanitary and household furniture on a large scale with inherently antimicrobial properties is an essential field of research. This work focuses on the synthesis of polymer composites based on the unsaturated polyester of resin loaded with 5 wt.%-Triclosan produced by a co-mixing approach on automated technological complex with a potential for broad applications. According to findings, the polymer composite has a non-porous structure (surface area < 1.97 m2/g) suitable for sanitary applications to reduce the growth of bacteria. The chemical composition confirmed the presence of major elements, and the inclusion of Triclosan was quantitatively confirmed by the appearance of chlorine on XRF (1.67 wt.%) and EDS (1.62 wt.%) analysis. Thermal analysis showed the difference of 5 wt.% in weight loss, which confirms the loading of Triclosan into the polymer matrix. The polymer composite completely inhibited the strains of S. aureus 6538-P, S. aureus 39, S. epidermidis 12228, and Kl. Pneumoniae 10031 after 5-min contact time. The antimicrobial effects against Kl. pneumoniae 700603, Ps. aeruginosa 9027 and Ps. aeruginosa TA2 strains were 92.7%, 85.8% and 18.4%, respectively. The inhibition activity against C. albicans 10231 and C. albicans 2091 was 1.6% and 82.4%, respectively; while the clinical strain of C. albicans was inhibited by 92.2%. The polymer composite loaded with 5 wt.%-Triclosan displayed a stability over the period that illustrates the possibility of washing the composite surface.en_US
dc.identifier.citationTauanov, Z., Zakiruly, O., Baimenova, Z., Baimenov, A., Akimbekov, N. S., & Berillo, D. (2022). Antimicrobial Properties of the Triclosan-Loaded Polymeric Composite Based on Unsaturated Polyester Resin: Synthesis, Characterization and Activity. Polymers, 14(4), 676. https://doi.org/10.3390/polym14040676en_US
dc.identifier.urihttp://nur.nu.edu.kz/handle/123456789/7285
dc.language.isoenen_US
dc.publisherPolymersen_US
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.subjectType of access: Open Accessen_US
dc.subjectpolymeren_US
dc.subjectcomposite resinen_US
dc.subjectantimicrobial activityen_US
dc.subjecttriclosanen_US
dc.subjectantibacterialen_US
dc.titleANTIMICROBIAL PROPERTIES OF THE TRICLOSAN-LOADED POLYMERIC COMPOSITE BASED ON UNSATURATED POLYESTER RESIN: SYNTHESIS, CHARACTERIZATION AND ACTIVITYen_US
dc.typeArticleen_US
workflow.import.sourcescience

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
polymers-14-00676-v3.pdf
Size:
4.28 MB
Format:
Adobe Portable Document Format
Description:
article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.28 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections