Investigation of SiC based antireflection coatings for Si solar cells by numerical FTDT simulations

dc.contributor.authorSultanov, Assanali
dc.contributor.authorNussupov, Kair
dc.contributor.authorBeisenkhanov, Nurzhan
dc.date.accessioned2020-10-19T06:02:49Z
dc.date.available2020-10-19T06:02:49Z
dc.date.issued2020-08
dc.description.abstractAmorphous silicon-based thin layers (SiO2, SiN, a-SiC:H, and so on) for antireflection coatings, diffusion barriers, passivation layers have been broadly researched in the solar cell industry [1]. Such advantages of hydrogenated amorphous silicon carbide as a wide forbidden zone, excellent coefficient of thermal expansion, which corresponds to silicon wafers, relatively good thermal and mechanical stability [1,2], the possibility of being used as an antireflection and passivating layer simultaneously, make it an important material for use in solar cells. One of the key factors negatively affecting the efficiency of solar cells is the reflection of incident light. The use of antireflection coatings can significantly increase the amount of light involved in the generation of an electron-hole pairs, which in turn increases the efficiency of solar cells. Due to the effective refractive index n ranging from 2.560 to 2.832 and ease of synthesis [3], SiC has a high potential for use in antireflection coatings. In this paper, a series of simulations of SiC based antireflection coatings was carried out. The reflections of a single SiC layer, double-layer SiC-MgF2 coating and triple-layer SiC-ZnS-MgF2 coating in the range of wavelength from 300 to 800 nm was compared. The optimization of the results showed that the double-layer structure reaches a minimum reflection of 0.006% at the level of 737 nm. Moreover, in the interval from 475 to 800 nm, the reflection does not exceed 1%. Subsequently, the double-layer structure was compared with more classical combinations of ZnS-MgF2 and TiO2-SiO2. As the simulations show, SiC-MgF2 antireflective coating achieves better results indicating its high prospective for future application.en_US
dc.identifier.citationSultanov, A., Nussupov, K. & Beisenkhanov, N. (2020). Investigation of SiC based antireflection coatings for Si solar cells by numerical FTDT simulations [Abstract]. The 8th International Conference on Nanomaterials and Advanced Energy Storage Systems; Nazarbayev University; National Laboratory Astana; Institute of Batteries.en_US
dc.identifier.urihttp://nur.nu.edu.kz/handle/123456789/5008
dc.language.isoenen_US
dc.publisherThe 8th International Conference on Nanomaterials and Advanced Energy Storage Systems; Nazarbayev University; National Laboratory Astana; Institute of Batteriesen_US
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.subjectantireflection coatingsen_US
dc.subjectnumerical FTDT simulationsen_US
dc.subjectSi solar cellsen_US
dc.subjectResearch Subject Categories::TECHNOLOGYen_US
dc.titleInvestigation of SiC based antireflection coatings for Si solar cells by numerical FTDT simulationsen_US
dc.typeAbstracten_US
workflow.import.sourcescience

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Abstract book INESS 2020_Part23.pdf
Size:
335.83 KB
Format:
Adobe Portable Document Format
Description:
Abstract
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.28 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections