VARIETY OF BICOMMUTATIVE ALGEBRAS DEFINED BY IDENTITY Γ[(AB)C − 2(BA)C + (CA)B] + Δ[C(BA) − 2C(AB) + B(AC)] = 0

dc.contributor.authorBakirova, Altynay
dc.date.accessioned2022-05-16T10:37:56Z
dc.date.available2022-05-16T10:37:56Z
dc.date.issued2022-05
dc.description.abstractOne of the important problem of the theory of polynomial identi tites in algebra is describe all varieties of algebras with given system of identities. Our aim is to classify all subvarieties of the variety of bicom mutative algebras. Classifying is usually done in the language of lattices. Of course this problem is equivalent to describing of T-ideals. In order to construct a lattice of subvarieties of given variety of algebras, we need to define the following 1) determine the module structure of Pn(M) over the symmetric group; 2) find for each irreducible Sn-module in Pn(M) a consequence in Pn+1(M).en_US
dc.identifier.citationAltynay Bakirova (2022). Variety of Bicommutative Algebras defined by identity γ[(ab)c − 2(ba)c + (ca)b] + δ[c(ba) − 2c(ab) + b(ac)] = 0. Nazarbayev University, Nur-sultan, Kazakhstanen_US
dc.identifier.urihttp://nur.nu.edu.kz/handle/123456789/6153
dc.language.isoenen_US
dc.publisherNazarbayev University School of Sciences and Humanitiesen_US
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.subjectType of access: Restricteden_US
dc.subjectalgebraen_US
dc.titleVARIETY OF BICOMMUTATIVE ALGEBRAS DEFINED BY IDENTITY Γ[(AB)C − 2(BA)C + (CA)B] + Δ[C(BA) − 2C(AB) + B(AC)] = 0en_US
dc.typeMaster's thesisen_US
workflow.import.sourcescience

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bakirova, Altynay.pdf
Size:
205.58 KB
Format:
Adobe Portable Document Format
Description:
Thesis
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.28 KB
Format:
Item-specific license agreed upon to submission
Description: