OPTIMAL CONTROL PROBLEM

dc.contributor.authorKappar, Yerdaulet
dc.date.accessioned2024-05-03T10:51:28Z
dc.date.available2024-05-03T10:51:28Z
dc.date.issued2024-04-15
dc.description.abstractThis research paper delves into optimizing the Average Value at Risk (AVaR) using Approximate Dynamic Programming (ADP) in the context of optimal control problems. The study focuses on comparing different numerical optimization methods to achieve that. The methods include Bisection, Gradient Descent, Simulated Annealing, and Conjugate Gradient. The purpose is to assess their accuracy and computational effectiveness in optimizing AVaR function within discrete time, finite horizon settings.en_US
dc.identifier.citationKappar, Y. (2024). OPTIMAL CONTROL PROBLEM. Nazarbayev University School of Sciences and Humanitiesen_US
dc.identifier.urihttp://nur.nu.edu.kz/handle/123456789/7618
dc.language.isoenen_US
dc.publisherNazarbayev University School of Sciences and Humanitiesen_US
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.subjectType of access: Open Accessen_US
dc.subjectapproximate dynamic programmingen_US
dc.subjectaverage value-at-risken_US
dc.subjectconvex optimizationen_US
dc.subjectoptimization techniquesen_US
dc.subjectstochastic modellingen_US
dc.subjectMarkov decision processesen_US
dc.subjectoptimal controlen_US
dc.titleOPTIMAL CONTROL PROBLEMen_US
dc.typeCapstone Projecten_US
workflow.import.sourcescience

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
YerdauletKappar_capstone2024.pdf
Size:
734.27 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
6.28 KB
Format:
Item-specific license agreed upon to submission
Description: